Estimation with correlated censored survival data with missing covariates.
نویسندگان
چکیده
Incomplete covariate data are a common occurrence in studies in which the outcome is survival time. Further, studies in the health sciences often give rise to correlated, possibly censored, survival data. With no missing covariate data, if the marginal distributions of the correlated survival times follow a given parametric model, then the estimates using the maximum likelihood estimating equations, naively treating the correlated survival times as independent, give consistent estimates of the relative risk parameters Lipsitz et al. 1994 50, 842-846. Now, suppose that some observations within a cluster have some missing covariates. We show in this paper that if one naively treats observations within a cluster as independent, that one can still use the maximum likelihood estimating equations to obtain consistent estimates of the relative risk parameters. This method requires the estimation of the parameters of the distribution of the covariates. We present results from a clinical trial Lipsitz and Ibrahim (1996b) 2, 5-14 with five covariates, four of which have some missing values. In the trial, the clusters are the hospitals in which the patients were treated.
منابع مشابه
Spatial Modeling of Censored Survival Data
An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper,...
متن کاملCox Regression for Current Status Data with Missing Covariates
Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are not yet investigated. Our study is partly motivated by analysis of fracture data from a cross-sectional study, where the ocurrence time of fracture was interval-censored and...
متن کاملSimple adjustments for randomized trials with nonrandomly missing or censored outcomes arising from informative covariates.
In randomized trials with missing or censored outcomes, standard maximum likelihood estimates of the effect of intervention on outcome are based on the assumption that the missing-data mechanism is ignorable. This assumption is violated if there is an unobserved baseline covariate that is informative, namely a baseline covariate associated with both outcome and the probability that the outcome ...
متن کاملکاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی
Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...
متن کاملFRAILTYPACK: An R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation
Frailty models are very useful for analysing correlated survival data, when observations are clustered into groups or for recurrent events. The aim of this article is to present the new version of an R package called frailtypack. This package allows to fit Cox models and four types of frailty models (shared, nested, joint, additive) that could be useful for several issues within biomedical rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2000